Scheduling Real-Time Components Using
Jitter-Constrained Streams

Claude-Joachim Hamann Steffen Zschaler
Operating Systems Group Software Engineering Group
Fakultt Informatik Fakultt Informatik
Technische Universit Dresden Technische Universit Dresden
Dresden, Germany Dresden, Germany
Email: claude-joachim.hamann@tu-dresden.de Email: steffen.zschaler@tu-dresden.de

Abstract—Component-based applications require good mid- specifications of the intrinsicnonfunctional properties of a
dleware support. In particular, business logic should be sep- component. This information is used by the container, together
arated from management code for guaranteeing nonfunctional \yith information about the execution context (available re-

properties of a system. We present an approach calle@ontainer- t fth t st tc) t th
Managed Quality Assurancen which a component container uses sources, parameters of the request stream, etc.) to manage the

nonfunctional specifications of components to determine how to COmponents in such a way that the services provided by the
use these components, and which system resources to allocate, tsystem as a whole have certain (specified) extrinsic nonfunc-
provide certain services with guaranteed nonfunctional proper- tional properties. In essence, container-managed quality assur-
ties. ance serves to automate the implementation of scheduling and

As an example, we show how this technique can be applied : L . >
to automatically allocating CPU and memory resources for 'co0Urce allocation decisions based on declarative descriptions

components with real-time constraints. To this end, we use Of th? compor_wents in an application. _
a mathematical model based on jitter-constrained streams, a This paper is structured as follows. In the next section, we

mathematical abstraction of event streams. explain our idea of container-managed quality assurance and
how support for guaranteeing response time of a service can
|. INTRODUCTION be implemented. Section Il then discusses jitter-constrained

streams—the mathematical foundation of our approach—and
Component-based software engineering (CBSE) [1] hpgesents some theoretical results. Finally, Sect. IV uses these
become an important approach to software development, B@proaches to complete the container presented in Sect. Il. The
cause it promises more efficient, faster, and less error-profper concludes with a review of related work.
development cycles. This promise is based on the idea of

reusing pre-fabricated and individually tested software com- |l. CONTAINER-MANAGED QUALITY ASSURANCE
ponents provided by third-party developers. In this scenario,Figyre 1 shows the basic structure of a system for container-
component developers focus on a specific business area Whﬁgﬁaged quality assurance as a Unified Modelling Language
they develop great experience and expertise and are, thus, ?QﬁL) [4] class diagram. In the centre of the diagram, we
to produce high-quality software components for this businegse theContainer that manageomponents and uses
area. These components are then bought by other parties Whgy, 1o provideServices . Obviously, both components
integrate them to produce customer-specific applications. g services have a functional and a nonfunctional specifi-
course, this implies that the components will be reused incgtion. The container implements container-managed quality
multitude of contexts, not all of which can be predicted by thgsg\rance through so-call&€ontainer Strategies
original developer. Algorithms for transforming components with a certain in-
This is especially relevant when discussing non-functionginsic non-functional specification and availaBesources
properties of components (in particular Quality-of-Servicgas per aResource Specification) into services with
properties) or the resulting application. These properties &&ertain extrinsic nonfunctional specification.
strongly affected by the usage context [2], [3]. It is, therefore, |n this paper, we discuss the mathematical background and
necessary to separate the concerns of business logic aﬂﬁroach for one such container strategy. A comporepito-
support for nonfunctional properties of the resulting applicgides one operation of which the execution time is known. The
tion. Note that for the functional side this has already be@ntainer will receive a stream of requests for the functionality
done. Components are typically executed in a compongifbvided through this operation. Requests occur periodically,
infrastructure (also callectontaine)), which—among other pyt there may be a certain jitter. The container strategy must

things—provides services for finding and invoking the servicggserve sufficient resources (in particular, CPU cycles and,
of other components. This leads us to the notioohtainer-

Managed Quality Assurance&€omponent developers provide cf. [3] for a more detailed discussion of this terminology.

Component H| Functional Specification Non-functional Specification

components: services
Resource ! Container |—% Service
ﬁ Algorithm
| Resource Specification H Container Strategy
Fig. 1. UML model of a system using container-managed quality assurance
1. Remove request Worker Thread 2. Invoke component
i 1=
Incomlngrequesls If (r ° NULL) {
I— bufferManager.sendResult (
invoke (componentinstance,)

}

Fig. 2. Dynamic structure of a component managed by our container strate}gy
where cpuScheduler represents an interface for com-
municating with the underlying resource manager and

potentially, buffer space for incoming requests) and credbafferManager represents an interface of the container for
sufficiently many instances of (perhaps running on different accessing the buffer and sending back results to the correct
processors of a multi-processor machine) to honour thedgnt.
requests and guarantee a certain upper bound for the respons$e order for this approach to work, the container strategy
time of each request. needs a way to determine the required buffer size and the

Such a container strategy consists of two parts: scheduling parameters (number of component instances, pe-

1) The container strategy must compute the required buffé@d and execution time of the underlying tasks) from its
size, and the number of component instances requirdgiowledge about worst-case execution time, required response
For each component instance, the container strategy afio€, and request-stream parameters. The following two sec-
cates the required amount of memory and starts a workéns deal with this issue: The next section provides the
thread that will manage invocations of operations offeré@athematical foundations, while Sect. IV explains how this
by the component. For each thread it allocates a ta&Rh be applied for our container strategy.
ywth the CPU scheduler. The e>.<ecut|on time of the task Il JITTER-CONSTRAINED STREAMS (JCS)
is derived from the execution time of the component’s . . . »
operation. Period and deadline are determined such ag '€ formalism “jitter-constrained periodic stream” pre-

to guarantee the required response time. Additional ,nted in [5], [6] aIIow§ the treatment of sequences of events
the container strategy allocates a buffer for incomin at normally occur with a constant period, but can be 00

requests. The resulting system is depicted in Fig. 2 arly or too late within certain defined boundaries. We use this
2) The worker thread executes an infinite loop, in whicﬂwdel to determine buffer sizes and delays. In the following,
e modify the definitions given in [5] and summarise some

it first blocks until the scheduler signals the beginnin . X
of a new period. It then tries to remove a request frot sults. Then, we apply the formalism to the problem described

the buffer, and if there is one available, it invokes th& Sect._l. . .
component's operation with the new request. In this [5] discusses streams of events (interpreted as sending or

way, all knowledge about how to communicate witfjeceving 9f dat.a pac_kets of constant size) of the follpwing
the underlying CPU scheduler is encapsulated in tr%pe: Starting with a time, events occur sequentially with a

container. In fact, the component does not need to kndRnstant temporal distance @f However, the occurrence of
that theré will be, any scheduling at all events may deviate from this constant schedule. In particular,

The worker thread can be represented in pseudo-codee¥'§nts may occur to? early k_)y a maximum tmer too late
by a maximum timer’. The time between the occurrence of

follows: | -
hile (true) { two events must be at leaf. T is, thus, the average time
N puSche between two consecutive events. [5] sgts= 0 immediately
heduler.waitForNextPeriod(); .
cpuScheduler.waitForNextPeriod(); o SSUMEB < D < T These parametefE. D v 1’ aro
Request r = bufferManager then used to derive—among others—burst length and buffer

.getNextRequest(); sizes.

2

Su

Further studies [7], [8] require the discussion of cases othes!
thanty = 0. Additionally, this enables us to completely repre-
sent jitter by onlyoneparameter as shown in [6, Corollary 1].,5 1
Both theory and application remain the same whether this
parameter represents delay or early occurrence. We, therefose
decided to interpret it as delay, as this avoids negative times]
when studying streams in isolation. Moreover, [6] discusses¢——— L HL s ———
the border-line case = 0 and D = T as additional ©° ' tofr 2 GW‘:‘O !
extensions of the original definition. If we identify events :
with the time of their occurrence; and abstract from the rig 3. Limits - and trajectory— of a JCSS = (4, 1, 14, 0)
concrete notion oftime, the following modification of the
original definition suggests itself:

Definition 1 (Jitter-constrained periodic stream) Let It turns out, that for all analytic studies of such streams one
D.T.rtg€R with 0<D<T.T>0,r>0. (1) type of_event sequences is particularly importa'nt: quuences
of maximum length where all events occur with minimum
A jitter-constrained periodic streamwith average valuel’, distance—called bursts (cf. Fig. 3). From [5], we know that
minimum value D, jitter = and initial value ¢, (jitter- the burst lengthl for a JCSS = (T', D, 7,to) is
constrained stream, JCS) is a sequeagg—o,1,... of numbers

for which the following conditions hold: L=1+ {T T DJ (4)
a; € [t0+ZT,t0+ZT+T]§R
ais1—a; > D Vie N, and the earliest starting time for a burst is
(2 =
be=to+(L—-1)(T' - D). (5)

In the following, we are going to interpret all such streams
as temporal sequences of events. Therefore, we keep usin§he main focus of the discussion in [5], [7], [8] is a buffer
the termsperiod minimum distancejitter (or delay), and thatis being filled by a JCS = (T, D, 7, to) with data packets
start time for the parameters. Symbolically we writ6é = of equal size. Data packets are removed from the buffer with a
(T, D, 1,tp). This does not denote a concrete stream, but thenstant temporal distance 6f Two special types of streams
extent of all event sequences for which Def. 1 holds with there studied and for both the minimum buffer sjzfor lossless
given parameter values. A concrete stream (a;)i—o0,1,.. IS processing is determined. Here, we generalise these results
then given through the concrete time instamtsat which the to arbitrary JCS and, additionally, we compute the maximum
individual events occur. The border-line cases foare the time a data packet remains in the buffer (wait titpein terms
two concrete streams, and s;?, for which all events occur of queueing theory). We call the filling process teducer
at the earliest and latest time instant, respectively. processPP and the removing process tliensumer process
From this last point of view, we can understand streamCP.
as a trajectory of the set of event sequences defined by As in [5] we study the following removal strategy, which
(T, D,,ty) corresponding to Def. 1. This introduces a viewve will call undelayed

of a JC_S deviati_ng from [5]: A conqrete str_eam is_representedl) If a data packet arrives in an empty system it is removed
as a (right-continuous) step functiarft) with salti a¢; and immediately

step height 1 yvhere(_t) is the number of events that have 2) When the consumer has removed a packet, it is ready
occurred until timet. Figure 3 shows the two streams and to remove the next packet after the constant tife

s as well as the interval for (of the 7th event) for the 3) The consumer pauses if no data packets are available for

ts;reiamS =('=4,D =17 = 141 = 0). It is obvious processing. In particular, the consumer only starts when
at:

14|t >t the first data packet arrives.
Su(t) = { 0 T f < ﬁo 4) When a data packet is removed from the buffer, the
0 3) corresponding slot in the buffer is available immediately.

This means that an arriving data packet does not require
additional buffer space if the consumer is ready for a
removal at the time of arrival.

Every concrete streamis then a step functios(¢) bounded 5) Packets are removed in FIFO order.
by s, from above ands; from below and whereD is the Then the following holds:

minimum width of a step and + 7' is the maximum step
width (cf. Fig. 3). Theorem 1 A producer proces® P produces data packets in

the form of a JCSS = (T, D, 7, to). A consumer process P
2For upper andlower bound. consumes these packets undelayed with the constantZtime

t—T—to >
s(t) = 1+ [t>tg+7
0 t<to+T1

Then, a buffer of size 4

15 1
.
=|= 6

b [T—‘ ©]

is sufficient for lossless processing. The maximum wait timéof

t,, of a data packet in the buffer is 1

ty = 7. Mo

The proof of this theorem can be found in the appendix. — . —
In the following, we apply this formalism to two specialised 1, = o ! 4 20 i 40 60 t

producer—consumer problems from the point of view of a otz |
—_—

multi-processor system to provide a solution to the task =
discussed in Sect. |. More precisely, a server process receives
reque,StS from a client proce;s. _The requests arrive as a ‘]E}é%. Removal time# for a JCSS = (4, 1, 14, 0) and a sufficiently large
but with an average rate that is higher than what the server ¢aRer. Elements are removed wiffi = 12

handle. Processing time is constant and requests are processed

undelayed (as defined above). Incoming requests are placed

n a buffer (un[ess the SEIver s available fqr processing the soon as possible, a burst arrives. Should—differently from
request immediately), the size of the request is not relevant. 1o ~

ensure stationary behaviour of the system, the server proce'% 4—T be no integer multiple of” the maximum wait time

. . . reduces bynT — T.
must, thus, be available in more than one instance. We ar y .
0 summarise:

interested in computing the required minimum number of
instances, the required buffer size, and the maximum wait tiffaeorem 2 Let P be a buffer filled by a client processP

of a request for a buffer shared by all instances. in the form of a JCSC = (T,D,r,t,) and emptied by
We use the following terminology: n instances of a server proce$s. SP removes elements
C = (T,D,7,0) Input stream (a JCS) produced by theindelayed starting ay and processes them in the constant
client process timeT > T. Then
T>T Processing time of the server process for T
one request. This is, thus, the constant =17 ©)
time after which the server can first re-
move a new request from the buffer. s the minimum number of instances required so that the
n Number of required instances of thepuffer does not grow beyond all bounds. It is then sufficient
server process running in parallel to provide a bufferP of size
P Minimum buffer size required for lossless -
processing p= [—W (10)
tw Maximum wait time of a request. T

The actual starting time of’ and the precise description ofto guarantee lossless processing of all requests. Furthermore,
the consumer process (server) as a JCS are not relevant in this -

context. We, initially, study the removal strategy where the tw=7+T —nT (11)
server works undelayed in the sense defined above.

For the number of required instancés. .. I,, obviously gives the maximum wait time (maximum delay until a request

is removed from the buffer) for an element in bufier O

n = {T-‘ (8) Finally, we discuss a modified server behaviour more

T closely modelling real-world situations. The server now does
A strict limit for the buffer sizep of a common bufferp, NOt immediately remove a data packet arriving at an empty
which stores all incoming events sequentially and is empti@yffer (as this would require notification of the server process
round-robin style by the individual instances can be four@d: thus, induce additional overhead); instead, it checks
by noting thats; represents the time instants when a daffi€¢ buffer in regular intervals. We call the corresponding
packet is being removed from the buffer (cf. Fig. 4). HencdMe instantssampling pointsin analogy to above, we use
we can reuse the argument from Theorem 1 and get: HBE following removal strategy, which we will catrictly
lossless processing it is sufficient to use a buffer of giz&"]. Periodic:
Figure 4 additionally shows that the maximum wait time of a 1) The server removes data packets from the buffer at a
request in the buffer is equal to. Furthermore, we can see constant rate with no jitter beginning at a certain start
from the figure that the two limits (buffer size and wait time) time.
are strict for request streams of the following formrequests 2) If the buffer is empty when the server checks it, the
occur individually each at the latest possible time. After that, = server pauses until the next sampling point.

3) A data packet cannot be removed from the buffer immé&e number of sampling points &f during the arrival of the
diately upon arrival, but only at the next possible latepurst, more precisely in the intervéd,,, a,, + (L — 1) D]:3
sampling point. L-1D L(T' — D)+ D

4) When a data packet is removed from the buffer, the p=1L— V) J = [()+ -‘ .

- T' T’
corresponding slot in the buffer is available immediately.

5) Packets are removed in FIFO order. If, however, 7" > A (Fig. 5 b)) in the worst case, at,

We let instances work with a relative offsgt — L7 This the buffer contains exactly one element, which arrived at a

leads to the following formalisation: " previous sampling point. Consequently,is the difference

As before, letC = (T, D, 7, 0) be the input stream induced®f L +1 and the number of sampling points in the interval

by the client process, arifl > T be the constant service time'®n—1: ¢n—1 +A+(L-1)Df:
of the server. With A+(L-1)D (L+1)T'+7—-LT
1 p=L+l- T - T
T ==T offset between server instances (12)) o))

n The maximum wait timet,, can then be derived easily as
the server instances then induﬂestrict'y periodic Streams’ the distance between the arrival of the last burst event and its
which as JCSs can be written: removal from the buffer:

L(T"-D)+D for7/ < A

W:(T,T,O,z’T'>7 i=0,...,n—1 .

. . . . L+1)T — LT forT' > A.
This results in a procesg with which data packets can be (L+ DT +7 ort =
removed from the buffer and obviousty = (77,77,0,0). The Packets arriving after the burst cannot increase the buffer,
actual removal process can be derived frénby “stretching” as their distance to the burst will be at least a multiple
in the direction oft by 7" wheneverV does not find a data of 7" > 7", so that at least one packet has been removed

packet in the buffer. It should be noted that it can be easipgfore their arrival. If the eventsy, ..., a,_1 arrive earlier
seen from (8) that than at their respective latest possible moment, they will still
be removed at the times just determined (possibly earlier).
T — 2T with = € (”‘1’1}_ Hence, the situation cannot be made worse in this way.
n This argumentation also holds for the complete future stream

Intuitively, a burst requires the most space in the buffdpehaviour. o
The longest wait time occurs, when all server instances ard inally, the two examples presented in Fig. 5 show that the

occupied for as long as possible when a bursts arrives. Hercglimates given are strict, because the easily read-off buffer

we will study the following concrete stream € C for sizes and wait times coincide with the calculated ones-(
determining buffer sizep and wait timet,,: n events at the

4,t, = 8.5 andp = 5,t, = 13.5, resp.; in case b) the first
latest possible time are followed as soon as possible by a buPYfSt element is removed &t= 24.5). Additionally, it is easy

to see (and provable) that the values determinedIfor A

a; = 7T+iT, i=0,....n—1 are at least as big as for the opposite case. Hence, these values
an = nT+b.=nT+(L—1)(T—D) can be taken asa generic (albeit no longer strict) upper bound.
We summarise these results in the following theorem,
(L andb, from (4) and (5)). including also the cas€” < D. Of course, all statements

Because ofl” < T, the events occurring beforg,_» will hold also for7 = T and T < T. This theorem is thus a
be removed until the next event arrival; alsa:at ;, the buffer generalisation of the studies presented above.

is empty. We will now discuss the worst-case situations for ”’ﬁweorem 3 A buffer P is filled by a producer procesBP
cases where the buffer is empty or contains one last elemﬁptthe form of a JCSC = (T,D,,t,) and emptied by

when the burst arrives. n instances of a consumer proceS$> removing elements

Let from the buffer following a strictly periodic removal strategies
A=ay—an starting att, and with a constant period @f. Then
be the distance between the burst and the last event before it T
(see Fig. 5). Then "=lT
A = TH+(L-1)(T-D)-r. is the minimum number of instances required so tRaioes

,)) not grow beyond all bounds. When starting the individual
If 7" < A (Fig. 5 a@)) a,—1 Will, thus, be removed at j siances with a relative offset

the latest whem,, arrives, so that the burst hits an empty 1.

buffer. In the worst casey,, is a sampling point of/, so that T ==-T (13)
the first event of the burst will not be taken from the buffer "

immediately. The required buffer sizeis thenL reduced by 3Note:vVz € R: — |z] = [—z]

&
O
~

A+(L-1)D

[y
o
T T T A

10
A A
Fig. 5. Removal processes_?_ for a producer processx C = (4,7,1,0). | represents a sampling point without removal.

a)r=13,T=5—-25=T'"<A=3 byr=135T=7—-35=T >A=25

lossless processing can be guaranteed with a buffer of size ¢,. the response time of the service provided by the system
as a whole; that is, the maximum time between the ar-

PL“)TT#W for T > A rival of a request and the sending of the corresponding
response
p= "L(T’—D)-&-D—‘ for D<T < A (14) DPm f[he amount of memory required for a buffer of incom-
£ -0 = ing requests.
, First, it is clear that we can map this task to the problem
1 for 7" < D treated in Theorem 3 by settng = R and T = t..
resulting in a wait time Therefore,n = [t./T]. This means, we need to ask the
underlying resource management system (e.g., [9]) to schedule
(L+1)T"+7—-LT forT' > A n tasks with a period and relative deadline as well as worst-
case execution time af.. Of course, this would meah00%
tw =14 L(T'—D)+D for DT <A (15) resource utilisation for each CPU, which may not be adequate
in a system that should also serve other requests. We can
T’ forT" < D mitigate this by choosing period and relative deadline> t.

such that a reasonable CPU utilisation results. We must then
whereL =1+ {TIDJ andA =T+ (L —1)(T — D)—r.0 setT = tq and thusn = [t4/T]. Theorem 3 then tells us the
required buffer size in slotsa one request. Thug,, = m-p.
IV. APPLICATION TO CONTAINER-MANAGED QUALITY This amount of memory needs to be reserved, again, by the
ASSURANCE underlying resource management system. Finallys ¢+, .
We cannot make arbitrary choices foy becauset, will
In the previous section, we discussed a mathematical mofiglrease ast,; increases. Therefore, an upper limit foy
for streams of events and derived some results from this modgl.given by the response time our container strategy has to
In this section we are going to apply these results to thgarantee.
realisation of the container strategy from Sect. Il. Our strategy
requires the following inputs: V. RELATED WORK

R = (T,D,r,0) the description of the stream of incoming Even _though a lot of approaches have been developed for
requests for the operation provided by théChedUIIng real-time components g, .[10])' only very _fe_vv
component formulated as a JCS approaches attempt to provide automatisms for determining

te the worst-case execution time of the Comt_he required resources an_d component instances. [11] pre_sents
ponent operation when executed in agn approach for muItlpIexm_g T.CP—based requests on multiple

empty system instances of the same appllcatlor!. Resourcg allocation and the
m the maximum amount of memory re.management of the num_bgr of instances is Controllec_i by a
quired by one incoming request. closeq loop control CII’CL_JI'[|n_1plemented as an extension of
)) the Linux kernel. Real-Time interfaces [12] are an approach
The strategy produces the following output (if the task can kg specifying and reasoning about real-time properties in a
solved at all; that is, if sufficient resources are available): componentised manner. Although our formal foundations are
n the number of instances of the component that it witelated, we aim at automating the runtime support for real-
create to process the requests time properties and removing the burden of their handling

from the application developer. This is not considered in REFERENCES

[12]' The QUA_ project [_13] advocate the notion shfe [1] C. Szyperski,Component Software: Beyond Object-Oriented Program-
compositionwhich essentially means that components should ming 2nd ed., ser. Component Software Series. Addison-Wesley

be reusable in any context. This is to be achieved by movin&] Publishing Company, 2002.

L . S. Zschaler, “Formal specification of non-functional properties of
all context-related management logic into the infrastructure— component-based software,” Workshop on Models for Non-functional

for example, resource allocation and instance management. Aspects of Component-Based Software (NfC'04) at UML conference
This approach—similar to the concept of container-managed 2004 J.-M. Bruel, G. Georg, H. Hussmann, I. Ober, C. Pohl, J. Whittle,

l d in thi Id. th f and S. Zschaler, Eds., Sept. 2004, technical Report TUD-FI04-12
quality assurance presented In this paper—woula, thus, form Sept.2004 at Technische UniveigiDresden.

a good framework for the implementation of our ideas. [8] —, “Towards a semantic framework for non-functional specifications

The notion of jitter-constrained periodic streams (JCS) has ©f component-based systems,” Iroc. EUROMICRO Conf. 2004
b . d d b | R. Steinmetz and A. Mauthe, Eds. Rennes, France: IEEE Computer
een introduced [5], [6] to subsume several parameter sets gociety, Sept. 2004.

describing sequences of events which occur principally witl#] Object Management Group, “Unified modeling language: Superstructure

nstant rat t mav varv within aiven limits. Examples for Vversion 2.0, Aug. 2005, oMG, document number formal/05-07-
consta ate, bu ay vary .g € . S a p_es 0 04. [Online]. Available: http://www.omg.org/cgi-bin/doc?formal/05-07-
such parameter sets are the traffic description used in ATM g4

connections [14] and the model of linear bounded arrivals] C.-J. Hamann, “On the quantitative specification of jitter constrained

processes for transferring continuous media [15]. The JCS Periodic streams,” inProc. Sth Intl Workshop on Modeling,
del all . . h ival f diff Analysis, and Simulation of Computer and Telecommunication Systems
model allows to investigate the equivalence ot different setS (yascoTs'97) IEEE Computer Society, 1997. [Online]. Available:

of parameters and to transform descriptions between these nttp://os.inf.tu-dresden.de/pubs/

parameter sets. Furthermore, the approach is used for bufféf —— *Schwankungsbeschnkte Stome," Technische Universit Dres-
den, Technischer Bericht TUD-FI05-11, Aug. 2005.

dimensioning in an experimental real-time operating SYstelf] H. Berthold, S. Schmidt, W. Lehner, and C.-J. Hamann, “Integrated
[8] and in data base environments where chains of converters resource management for data stream systemsPrat. of the 20th

produce and consume sequences of data packets of varying Annual ACM Symposium on Applied Computing (SAC 208ata Fe,

. d . . . Mar. 2005.
sizes and at varying time Instants [7], [16]- [8] C.-J. Hamann and L. Reuther, “Pufferdimensionieruingstchwankungs-

Another approach similar to JCS is the so called network beschankte Stome in DROPS,” inGI/ITG Fachtagung MMB Trier,
calculus [17]. It arose from a set of developments that providﬁé Sept. 1999.

insights i fl | in th .[9] H. Hartig, L. Reuther, J. Wolter, M. Borriss, and T. Paul, “Cooperating
insights into flow problems encountered in the Internet and iN” (esource managers,” Workshop on QoS Support for Real-Time Internet

intranets and enables the solution of problems of buffer and Applications in conjunction with 5th IEEE Real-Time Technology and
delay dimensioning. The mathematical foundation lies in the APpplications Symposium (RTAS99) Vancouver, British Columbia,

. Canada: |IEEE, June 1999.
theory of Min-Plus algebras. In contrast to JCS, the modgh; c. p. Gill, D. L. Levine, and D. C. Schmidt, “The design and perfor-

focuses on continuous arrival and consumption processes. mance of a real-time CORBA scheduling servicBgal-Time Systems
vol. 20, no. 2, pp. 117-154, Mar. 2001, kluwer Academic Publishers.
VI. CONCLUSION [11] R. Zhang, T. F. Abdelzaher, and J. A. Stankovic, “Kernel support for

. open gos-aware computing,” iRroc. 9th Real-Time and Embedded
We have presented one strategy of container-managed qual- Technology and Applications Symposium (RTAS'03), Toronto, Canada
ity assurance, a technology in which component containers 'EEE Press, May 2003, pp. 96-105.
y gy P . jﬂl%h E. Wandeler and L. Thiele, “Interface-based design of real-time systems
manage resources and an'i”able _SOftwa_re components in with hierarchical scheduling,” ifProc. 12th IEEE Real-Time and Em-
a way as to provide certain services with certain guaranteed bedded Technology and Applications Symposium (RTABEE Press,
nonfunctional properties. Specifically, we have shown hoyy_ APr- 2006, pp. 243 — 252. .
. prop P . y 13{ R. Staehli and F. Eliassen, “QuA: a QoS-aware component architecture,”
f"‘ container can compute the requwed num_ber OT component simyla Research Laboratory, Tech. Rep. Simula 2002-12, 2002.
instances, the memory needed for buffering incoming requesig] The ATM Forum, “ATM user network interface specification, version
and the processing-resource demand of an application. All jt 3.0." Prentice Hall PTR, 1993. .

. g . l?ﬂ D. J. Anderson, “Metascheduling for continuous medfCM Transac-
requires to do so, is information about the worst-case execut tions on Computer Systemel. 11, no. 3, pp. 226-252, Aug. 1993.
time of the component, the response time that should [16] S.Schmidt, T. Legler, D. Schaller, and W. Lehner, “Real-time scheduling
guaranteed, and the request stream. We have used the math-for data stream management systems,Pioc. of the 17th Euromicro

ical th £ iitt trained st f delli Conference on Real-Time _Systerﬁalma de Mallorca, July 2005.
ematical theory of ji er-constrained streams for modelling7) j.-v. L. Boudec and P. ThirarNetwork Calculus: A Theory of Deter-
request streams and deriving buffer size, instance count, and ministic Queueing Systems for the Intefrear. LNCS. Springer, 2001,
response time. vol. 2050.

In this paper, we have developed the theory for this con-
tainer strategy. We are currently working towards a prototype
to test out our theory. Further, we want to extend theory and
prototype to cover more advanced scenarios and scheduling

strategies.

ACKNOWLEDGEMENTS

This work has been partially funded by the German Re-
search Council. The authors wish to thank Simoritder for
her helpful comments on a draft version of this paper.

A Su
15 T
f x..--
- E.------’ x.u----'
10} R S
S :- : — PR
] — xx
L — * T T Ty
tr=0 20 40 60

Fig. 6. Removal times for a JCSS = (4, 1,14, 0) and a sufficiently large
buffer

APPENDIX
PROOF OFTHEOREM 1

First, we note that the steps ef represent the latest time
instants at which a data packet is removed from the buffer. Be-
cause of the removal process’s periodicity, all previous packets
will have been remvoved by this time (cf. Fig. 6). Additionally,
no data packet can arrive later than Furthermore,s; is
identical with the removal process from the time when a data
packet arrives at the latest possible time instant. Thus, the
required buffer size is essentially the largest vertical distance
betweens, ands;, in other wordsp = s,,(to + 7).

More precisely: Ifr/T ¢ N then (considering (3))

p=nos =1+ 7] [5]

else if7/T € N then

p=sto 1= 7] =[]

It is evident thatt,, = 7: s, represents the earliest possible
arrival of a data packets; the latest removal of the same
packet. Thust,, is the maximum horizontal distance between
s, ands;.

Figure 6 also shows that these limits are strict: A burst
requiresp buffer slots and its last data packet is removed from
the buffer after a time of. |

