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Abstract— Component-based applications require good mid-
dleware support. In particular, business logic should be sep-
arated from management code for guaranteeing nonfunctional
properties of a system. We present an approach calledContainer-
Managed Quality Assurance,in which a component container uses
nonfunctional specifications of components to determine how to
use these components, and which system resources to allocate, to
provide certain services with guaranteed nonfunctional proper-
ties.

As an example, we show how this technique can be applied
to automatically allocating CPU and memory resources for
components with real-time constraints. To this end, we use
a mathematical model based on jitter-constrained streams, a
mathematical abstraction of event streams.

I. I NTRODUCTION

Component-based software engineering (CBSE) [1] has
become an important approach to software development, be-
cause it promises more efficient, faster, and less error-prone
development cycles. This promise is based on the idea of
reusing pre-fabricated and individually tested software com-
ponents provided by third-party developers. In this scenario,
component developers focus on a specific business area where
they develop great experience and expertise and are, thus, able
to produce high-quality software components for this business
area. These components are then bought by other parties who
integrate them to produce customer-specific applications. Of
course, this implies that the components will be reused in a
multitude of contexts, not all of which can be predicted by the
original developer.

This is especially relevant when discussing non-functional
properties of components (in particular Quality-of-Service
properties) or the resulting application. These properties are
strongly affected by the usage context [2], [3]. It is, therefore,
necessary to separate the concerns of business logic and
support for nonfunctional properties of the resulting applica-
tion. Note that for the functional side this has already been
done. Components are typically executed in a component
infrastructure (also calledcontainer), which—among other
things—provides services for finding and invoking the services
of other components. This leads us to the notion ofContainer-
Managed Quality Assurance:Component developers provide

specifications of the intrinsic1 nonfunctional properties of a
component. This information is used by the container, together
with information about the execution context (available re-
sources, parameters of the request stream, etc.) to manage the
components in such a way that the services provided by the
system as a whole have certain (specified) extrinsic nonfunc-
tional properties. In essence, container-managed quality assur-
ance serves to automate the implementation of scheduling and
resource allocation decisions based on declarative descriptions
of the components in an application.

This paper is structured as follows. In the next section, we
explain our idea of container-managed quality assurance and
how support for guaranteeing response time of a service can
be implemented. Section III then discusses jitter-constrained
streams—the mathematical foundation of our approach—and
presents some theoretical results. Finally, Sect. IV uses these
approaches to complete the container presented in Sect. II. The
paper concludes with a review of related work.

II. CONTAINER-MANAGED QUALITY ASSURANCE

Figure 1 shows the basic structure of a system for container-
managed quality assurance as a Unified Modelling Language
(UML) [4] class diagram. In the centre of the diagram, we
see theContainer that managesComponents and uses
them to provideServices . Obviously, both components
and services have a functional and a nonfunctional specifi-
cation. The container implements container-managed quality
assurance through so-calledContainer Strategies —
Algorithms for transforming components with a certain in-
trinsic non-functional specification and availableResources
(as per aResource Specification ) into services with
a certain extrinsic nonfunctional specification.

In this paper, we discuss the mathematical background and
approach for one such container strategy. A componentA pro-
vides one operation of which the execution time is known. The
container will receive a stream of requests for the functionality
provided through this operation. Requests occur periodically,
but there may be a certain jitter. The container strategy must
reserve sufficient resources (in particular, CPU cycles and,

1cf. [3] for a more detailed discussion of this terminology.
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Fig. 2. Dynamic structure of a component managed by our container strategy

potentially, buffer space for incoming requests) and create
sufficiently many instances ofA (perhaps running on different
processors of a multi-processor machine) to honour these
requests and guarantee a certain upper bound for the response
time of each request.

Such a container strategy consists of two parts:

1) The container strategy must compute the required buffer
size, and the number of component instances required.
For each component instance, the container strategy allo-
cates the required amount of memory and starts a worker
thread that will manage invocations of operations offered
by the component. For each thread it allocates a task
with the CPU scheduler. The execution time of the task
is derived from the execution time of the component’s
operation. Period and deadline are determined such as
to guarantee the required response time. Additionally,
the container strategy allocates a buffer for incoming
requests. The resulting system is depicted in Fig. 2.

2) The worker thread executes an infinite loop, in which
it first blocks until the scheduler signals the beginning
of a new period. It then tries to remove a request from
the buffer, and if there is one available, it invokes the
component’s operation with the new request. In this
way, all knowledge about how to communicate with
the underlying CPU scheduler is encapsulated in the
container. In fact, the component does not need to know
that there will be any scheduling at all.

The worker thread can be represented in pseudo-code as
follows:

while (true) {
cpuScheduler.waitForNextPeriod();

Request r = bufferManager
.getNextRequest();

if (r != NULL) {
bufferManager.sendResult (

invoke (componentInstance, r));
}

}

where cpuScheduler represents an interface for com-
municating with the underlying resource manager and
bufferManager represents an interface of the container for
accessing the buffer and sending back results to the correct
client.

In order for this approach to work, the container strategy
needs a way to determine the required buffer size and the
scheduling parameters (number of component instances, pe-
riod and execution time of the underlying tasks) from its
knowledge about worst-case execution time, required response
time, and request-stream parameters. The following two sec-
tions deal with this issue: The next section provides the
mathematical foundations, while Sect. IV explains how this
can be applied for our container strategy.

III. J ITTER-CONSTRAINED STREAMS (JCSS)

The formalism “jitter-constrained periodic stream” pre-
sented in [5], [6] allows the treatment of sequences of events
that normally occur with a constant period, but can be too
early or too late within certain defined boundaries. We use this
model to determine buffer sizes and delays. In the following,
we modify the definitions given in [5] and summarise some
results. Then, we apply the formalism to the problem described
in Sect. I.

[5] discusses streams of events (interpreted as sending or
receiving of data packets of constant size) of the following
type: Starting with a timet0, events occur sequentially with a
constant temporal distance ofT . However, the occurrence of
events may deviate from this constant schedule. In particular,
events may occur too early by a maximum timeτ or too late
by a maximum timeτ ′. The time between the occurrence of
two events must be at leastD. T is, thus, the average time
between two consecutive events. [5] setst0 = 0 immediately
and assumes0 < D < T . These parametersT,D, τ, τ ′ are
then used to derive—among others—burst length and buffer
sizes.



Further studies [7], [8] require the discussion of cases other
thant0 = 0. Additionally, this enables us to completely repre-
sent jitter by onlyoneparameter as shown in [6, Corollary 1].
Both theory and application remain the same whether this
parameter represents delay or early occurrence. We, therefore,
decided to interpret it as delay, as this avoids negative times
when studying streams in isolation. Moreover, [6] discusses
the border-line casesD = 0 and D = T as additional
extensions of the original definition. If we identify events
with the time of their occurrenceai and abstract from the
concrete notion oftime, the following modification of the
original definition suggests itself:

Definition 1 (Jitter-constrained periodic stream) Let

D,T, τ, t0 ∈ R with 0 ≤ D ≤ T, T > 0, τ ≥ 0. (1)

A jitter-constrained periodic streamwith average valueT ,
minimum value D, jitter τ and initial value t0 (jitter-
constrained stream, JCS) is a sequence(ai)i=0,1,... of numbers
for which the following conditions hold:

ai ∈ [t0 + iT, t0 + iT + τ ] ⊆ R
ai+1 − ai ≥ D

}
∀i ∈ N.

(2) �

In the following, we are going to interpret all such streams
as temporal sequences of events. Therefore, we keep using
the termsperiod, minimum distance, jitter (or delay), and
start time for the parameters. Symbolically we writeS =
(T,D, τ, t0). This does not denote a concrete stream, but the
extent of all event sequences for which Def. 1 holds with the
given parameter values. A concrete streams = (ai)i=0,1,... is
then given through the concrete time instantsai at which the
individual events occur. The border-line cases forS are the
two concrete streamssu and sl

2, for which all events occur
at the earliest and latest time instant, respectively.

From this last point of view, we can understand streams
as a trajectory of the set of event sequences defined byS =
(T,D, τ, t0) corresponding to Def. 1. This introduces a view
of a JCS deviating from [5]: A concrete stream is represented
as a (right-continuous) step functions(t) with salti ai and
step height 1, wheres(t) is the number of events that have
occurred until timet. Figure 3 shows the two streamssu and
sl as well as the interval fora6 (of the 7th event) for the
streamS = (T = 4, D = 1, τ = 14, t0 = 0). It is obvious
that:

su(t) =
{

1 +
⌊

t−t0
T

⌋
t ≥ t0

0 t < t0

sl(t) =
{

1 +
⌊

t−τ−t0
T

⌋
t ≥ t0 + τ

0 t < t0 + τ

(3)

Every concrete streams is then a step functions(t) bounded
by su from above andsl from below and whereD is the
minimum width of a step andτ + T is the maximum step
width (cf. Fig. 3).

2For upper andlower bound.
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Fig. 3. Limits
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of a JCSS = (4, 1, 14, 0)

It turns out, that for all analytic studies of such streams one
type of event sequences is particularly important: Sequences
of maximum length where all events occur with minimum
distance—called bursts (cf. Fig. 3). From [5], we know that
the burst lengthL for a JCSS = (T,D, τ, t0) is

L = 1 +
⌊

τ

T −D

⌋
(4)

and the earliest starting timebe for a burst is

be = t0 + (L− 1) (T −D) . (5)

The main focus of the discussion in [5], [7], [8] is a bufferP
that is being filled by a JCSS = (T,D, τ, t0) with data packets
of equal size. Data packets are removed from the buffer with a
constant temporal distance ofT . Two special types of streams
are studied and for both the minimum buffer sizep for lossless
processing is determined. Here, we generalise these results
to arbitrary JCS and, additionally, we compute the maximum
time a data packet remains in the buffer (wait timetw in terms
of queueing theory). We call the filling process theproducer
processPP and the removing process theconsumer process
CP .

As in [5] we study the following removal strategy, which
we will call undelayed:

1) If a data packet arrives in an empty system it is removed
immediately.

2) When the consumer has removed a packet, it is ready
to remove the next packet after the constant timeT .

3) The consumer pauses if no data packets are available for
processing. In particular, the consumer only starts when
the first data packet arrives.

4) When a data packet is removed from the buffer, the
corresponding slot in the buffer is available immediately.
This means that an arriving data packet does not require
additional buffer space if the consumer is ready for a
removal at the time of arrival.

5) Packets are removed in FIFO order.

Then the following holds:

Theorem 1 A producer processPP produces data packets in
the form of a JCSS = (T,D, τ, t0). A consumer processCP
consumes these packets undelayed with the constant timeT .



Then, a buffer of size

p =
⌈ τ

T

⌉
(6)

is sufficient for lossless processing. The maximum wait time
tw of a data packet in the buffer is

tw = τ . (7) �

The proof of this theorem can be found in the appendix.
In the following, we apply this formalism to two specialised

producer–consumer problems from the point of view of a
multi-processor system to provide a solution to the task
discussed in Sect. I. More precisely, a server process receives
requests from a client process. The requests arrive as a JCS,
but with an average rate that is higher than what the server can
handle. Processing time is constant and requests are processed
undelayed (as defined above). Incoming requests are placed
in a buffer (unless the server is available for processing the
request immediately), the size of the request is not relevant. To
ensure stationary behaviour of the system, the server process
must, thus, be available in more than one instance. We are
interested in computing the required minimum number of
instances, the required buffer size, and the maximum wait time
of a request for a buffer shared by all instances.

We use the following terminology:
C = (T,D, τ, 0) Input stream (a JCS) produced by the

client process
T̃ > T Processing time of the server process for

one request. This is, thus, the constant
time after which the server can first re-
move a new request from the buffer.

n Number of required instances of the
server process running in parallel

p Minimum buffer size required for lossless
processing

tw Maximum wait time of a request.
The actual starting time ofC and the precise description of
the consumer process (server) as a JCS are not relevant in this
context. We, initially, study the removal strategy where the
server works undelayed in the sense defined above.

For the number of required instancesI1 . . . In obviously

n =

⌈
T̃

T

⌉
. (8)

A strict limit for the buffer sizep of a common bufferP ,
which stores all incoming events sequentially and is emptied
round-robin style by the individual instances can be found
by noting thatsl represents the time instants when a data
packet is being removed from the buffer (cf. Fig. 4). Hence,
we can reuse the argument from Theorem 1 and get: For
lossless processing it is sufficient to use a buffer of sizedτ/T e.
Figure 4 additionally shows that the maximum wait time of a
request in the buffer is equal toτ . Furthermore, we can see
from the figure that the two limits (buffer size and wait time)
are strict for request streams of the following form:n requests
occur individually each at the latest possible time. After that,
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Fig. 4. Removal times
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for a JCSS = (4, 1, 14, 0) and a sufficiently large
buffer. Elements are removed with̃T = 12

as soon as possible, a burst arrives. Should—differently from
Fig. 4—T̃ be no integer multiple ofT the maximum wait time
reduces bynT − T̃ .

To summarise:

Theorem 2 Let P be a buffer filled by a client processCP
in the form of a JCSC = (T,D, τ, t0) and emptied by
n instances of a server processSP . SP removes elements
undelayed starting att0 and processes them in the constant
time T̃ > T . Then

n =

⌈
T̃

T

⌉
(9)

is the minimum number of instances required so that the
buffer does not grow beyond all bounds. It is then sufficient
to provide a bufferP of size

p =
⌈ τ

T

⌉
(10)

to guarantee lossless processing of all requests. Furthermore,

tw = τ + T̃ − nT (11)

gives the maximum wait time (maximum delay until a request
is removed from the buffer) for an element in bufferP . �

Finally, we discuss a modified server behaviour more
closely modelling real-world situations. The server now does
not immediately remove a data packet arriving at an empty
buffer (as this would require notification of the server process
and, thus, induce additional overhead); instead, it checks
the buffer in regular intervals. We call the corresponding
time instantssampling points.In analogy to above, we use
the following removal strategy, which we will callstrictly
periodic:

1) The server removes data packets from the buffer at a
constant rate with no jitter beginning at a certain start
time.

2) If the buffer is empty when the server checks it, the
server pauses until the next sampling point.



3) A data packet cannot be removed from the buffer imme-
diately upon arrival, but only at the next possible later
sampling point.

4) When a data packet is removed from the buffer, the
corresponding slot in the buffer is available immediately.

5) Packets are removed in FIFO order.

We let instances work with a relative offsetT ′ = 1
n T̃ . This

leads to the following formalisation:
As before, letC = (T,D, τ, 0) be the input stream induced

by the client process, and̃T > T be the constant service time
of the server. With

T ′ =
1
n

T̃ offset between server instances (12)

the server instances then inducen strictly periodic streams,
which as JCSs can be written:

Vi =
(
T̃ , T̃ , 0, iT ′

)
, i = 0, . . . , n− 1.

This results in a processV with which data packets can be
removed from the buffer and obviouslyV = (T ′, T ′, 0, 0). The
actual removal process can be derived fromV by “stretching”
in the direction oft by T ′ wheneverV does not find a data
packet in the buffer. It should be noted that it can be easily
seen from (8) that

T ′ = xT with x ∈
(

n− 1
n

, 1
]

.

Intuitively, a burst requires the most space in the buffer.
The longest wait time occurs, when all server instances are
occupied for as long as possible when a bursts arrives. Hence,
we will study the following concrete streams ∈ C for
determining buffer sizep and wait timetw: n events at the
latest possible time are followed as soon as possible by a burst:

ai = τ + iT, i = 0, . . . , n− 1
an = nT + be = nT + (L− 1) (T −D)

(L andbe from (4) and (5)).
Because ofT ′ ≤ T , the events occurring beforean−2 will

be removed until the next event arrival; also atan−1, the buffer
is empty. We will now discuss the worst-case situations for the
cases where the buffer is empty or contains one last element
when the burst arrives.

Let

∆ = an − an−1

be the distance between the burst and the last event before it
(see Fig. 5). Then

∆ = T + (L− 1) (T −D)− τ .

If T ′ ≤ ∆ (Fig. 5 a)) an−1 will, thus, be removed at
the latest whenan arrives, so that the burst hits an empty
buffer. In the worst case,an is a sampling point ofV , so that
the first event of the burst will not be taken from the buffer
immediately. The required buffer sizep is thenL reduced by

the number of sampling points ofV during the arrival of the
burst, more precisely in the interval(an, an + (L− 1) D]:3

p = L−
⌊

(L− 1) D

T ′

⌋
=

⌈
L (T ′ −D) + D

T ′

⌉
.

If, however,T ′ > ∆ (Fig. 5 b)) in the worst case, atan

the buffer contains exactly one element, which arrived at a
previous sampling point. Consequently,p is the difference
of L + 1 and the number of sampling points in the interval
(an−1, an−1 + ∆ + (L− 1) D]:

p = L + 1−
⌊

∆ + (L− 1) D

T ′

⌋
=

⌈
(L + 1) T ′ + τ − LT

T ′

⌉
The maximum wait timetw can then be derived easily as

the distance between the arrival of the last burst event and its
removal from the buffer:

tw =

 L (T ′ −D) + D for T ′ ≤ ∆

(L + 1) T ′ + τ − LT for T ′ > ∆.

Packets arriving after the burst cannot increase the buffer,
as their distance to the burst will be at least a multiple
of T ≥ T ′, so that at least one packet has been removed
before their arrival. If the eventsa0, . . . , an−1 arrive earlier
than at their respective latest possible moment, they will still
be removed at the times just determined (possibly earlier).
Hence, the situation cannot be made worse in this way.
This argumentation also holds for the complete future stream
behaviour.

Finally, the two examples presented in Fig. 5 show that the
estimates given are strict, because the easily read-off buffer
sizes and wait times coincide with the calculated ones (p =
4, tw = 8.5 and p = 5, tw = 13.5, resp.; in case b) the first
burst element is removed att = 24.5). Additionally, it is easy
to see (and provable) that the values determined forT ′ > ∆
are at least as big as for the opposite case. Hence, these values
can be taken as a generic (albeit no longer strict) upper bound.

We summarise these results in the following theorem,
including also the caseT ′ < D. Of course, all statements
hold also for T̃ = T and T̃ < T . This theorem is thus a
generalisation of the studies presented above.

Theorem 3 A buffer P is filled by a producer processPP
in the form of a JCSC = (T,D, τ, t0) and emptied by
n instances of a consumer processCP removing elements
from the buffer following a strictly periodic removal strategies
starting att0 and with a constant period of̃T . Then

n =

⌈
T̃

T

⌉
is the minimum number of instances required so thatP does
not grow beyond all bounds. When starting the individual
instances with a relative offset

T ′ =
1
n

T̃ (13)

3Note: ∀x ∈ R : −bxc = d−xe
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Fig. 5. Removal processes
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for a producer process
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C = (4, τ, 1, 0).
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represents a sampling point without removal.
a) τ = 13, T̃ = 5 → 2.5 = T ′ ≤ ∆ = 3 b) τ = 13.5, T̃ = 7 → 3.5 = T ′ > ∆ = 2.5

lossless processing can be guaranteed with a buffer of size

p =



⌈
(L+1)T ′+τ−LT

T ′

⌉
for T ′ > ∆

⌈
L(T ′−D)+D

T ′

⌉
for D ≤ T ′ ≤ ∆

1 for T ′ < D

(14)

resulting in a wait time

tw =


(L + 1)T ′ + τ − LT for T ′ > ∆

L(T ′ −D) + D for D ≤ T ′ ≤ ∆

T ′ for T ′ < D

(15)

whereL = 1+
⌊

τ
T−D

⌋
and∆ = T +(L− 1) (T −D)− τ .�

IV. A PPLICATION TO CONTAINER-MANAGED QUALITY

ASSURANCE

In the previous section, we discussed a mathematical model
for streams of events and derived some results from this model.
In this section we are going to apply these results to the
realisation of the container strategy from Sect. II. Our strategy
requires the following inputs:

R = (T,D, τ, 0) the description of the stream of incoming
requests for the operation provided by the
component formulated as a JCS

te the worst-case execution time of the com-
ponent operation when executed in an
empty system

m the maximum amount of memory re-
quired by one incoming request.

The strategy produces the following output (if the task can be
solved at all; that is, if sufficient resources are available):

n the number of instances of the component that it will
create to process the requests

tr the response time of the service provided by the system
as a whole; that is, the maximum time between the ar-
rival of a request and the sending of the corresponding
response

pm the amount of memory required for a buffer of incom-
ing requests.

First, it is clear that we can map this task to the problem
treated in Theorem 3 by settingC = R and T̃ = te.
Therefore,n = dte/T e. This means, we need to ask the
underlying resource management system (e.g., [9]) to schedule
n tasks with a period and relative deadline as well as worst-
case execution time ofte. Of course, this would mean100%
resource utilisation for each CPU, which may not be adequate
in a system that should also serve other requests. We can
mitigate this by choosing period and relative deadlinetd ≥ te
such that a reasonable CPU utilisation results. We must then
set T̃ = td and thusn = dtd/T e. Theorem 3 then tells us the
required buffer sizep in slotsà one request. Thus,pm = m ·p.
This amount of memory needs to be reserved, again, by the
underlying resource management system. Finally,tr = td+tw.

We cannot make arbitrary choices fortd becausetr will
increase astd increases. Therefore, an upper limit fortd
is given by the response time our container strategy has to
guarantee.

V. RELATED WORK

Even though a lot of approaches have been developed for
scheduling real-time components (e.g., [10]), only very few
approaches attempt to provide automatisms for determining
the required resources and component instances. [11] presents
an approach for multiplexing TCP-based requests on multiple
instances of the same application. Resource allocation and the
management of the number of instances is controlled by a
closed loop control circuit implemented as an extension of
the Linux kernel. Real-Time interfaces [12] are an approach
for specifying and reasoning about real-time properties in a
componentised manner. Although our formal foundations are
related, we aim at automating the runtime support for real-
time properties and removing the burden of their handling



from the application developer. This is not considered in
[12]. The QuA project [13] advocate the notion ofsafe
composition, which essentially means that components should
be reusable in any context. This is to be achieved by moving
all context-related management logic into the infrastructure—
for example, resource allocation and instance management.
This approach—similar to the concept of container-managed
quality assurance presented in this paper—would, thus, form
a good framework for the implementation of our ideas.

The notion of jitter-constrained periodic streams (JCS) has
been introduced [5], [6] to subsume several parameter sets
describing sequences of events which occur principally with
constant rate, but may vary within given limits. Examples for
such parameter sets are the traffic description used in ATM
connections [14] and the model of linear bounded arrival
processes for transferring continuous media [15]. The JCS
model allows to investigate the equivalence of different sets
of parameters and to transform descriptions between these
parameter sets. Furthermore, the approach is used for buffer
dimensioning in an experimental real-time operating system
[8] and in data base environments where chains of converters
produce and consume sequences of data packets of varying
sizes and at varying time instants [7], [16].

Another approach similar to JCS is the so called network
calculus [17]. It arose from a set of developments that provide
insights into flow problems encountered in the Internet and in
intranets and enables the solution of problems of buffer and
delay dimensioning. The mathematical foundation lies in the
theory of Min-Plus algebras. In contrast to JCS, the model
focuses on continuous arrival and consumption processes.

VI. CONCLUSION

We have presented one strategy of container-managed qual-
ity assurance, a technology in which component containers
manage resources and available software components in such
a way as to provide certain services with certain guaranteed
nonfunctional properties. Specifically, we have shown how
a container can compute the required number of component
instances, the memory needed for buffering incoming requests,
and the processing-resource demand of an application. All it
requires to do so, is information about the worst-case execution
time of the component, the response time that should be
guaranteed, and the request stream. We have used the math-
ematical theory of jitter-constrained streams for modelling
request streams and deriving buffer size, instance count, and
response time.

In this paper, we have developed the theory for this con-
tainer strategy. We are currently working towards a prototype
to test out our theory. Further, we want to extend theory and
prototype to cover more advanced scenarios and scheduling
strategies.
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Fig. 6. Removal times
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for a JCSS = (4, 1, 14, 0) and a sufficiently large
buffer

APPENDIX

PROOF OFTHEOREM 1

First, we note that the steps ofsl represent the latest time
instants at which a data packet is removed from the buffer. Be-
cause of the removal process’s periodicity, all previous packets
will have been remvoved by this time (cf. Fig. 6). Additionally,
no data packet can arrive later thansl. Furthermore,sl is
identical with the removal process from the time when a data
packet arrives at the latest possible time instant. Thus, the
required buffer size is essentially the largest vertical distance
betweensu andsl, in other wordsp = su(t0 + τ).

More precisely: Ifτ/T /∈ N then (considering (3))

p = su(t0 + τ) = 1 +
⌊ τ

T

⌋
=

⌈ τ

T

⌉
else if τ/T ∈ N then

p = su(t0 + τ)− 1 =
⌊ τ

T

⌋
=

⌈ τ

T

⌉
.

It is evident thattw = τ : su represents the earliest possible
arrival of a data packet,sl the latest removal of the same
packet. Thus,tw is the maximum horizontal distance between
su andsl.

Figure 6 also shows that these limits are strict: A burst
requiresp buffer slots and its last data packet is removed from
the buffer after a time ofτ . �


